Interaction of Biochar Addition and Nitrogen Fertilizers on Wheat Production and Nutrient Status in Soil Profiles

Plants (Basel). 2024 Feb 23;13(5):614. doi: 10.3390/plants13050614.

Abstract

To investigate the responses of crop production and soil profile nutrient status to biochar (BC) application, we conducted a soil column experiment considering two BC addition rates (0.5 and 1.5 wt% of the weight of 0-20 cm topsoil) combined with two nitrogen (N) input levels (low N: 144 kg ha-1, LN; high N: 240 kg ha-1, HN). The results showed that BC application increased the soil pH. The soil pH of the 0-10 cm profile under LN and the 20-40 cm profile under HN were both significantly increased by 0.1-0.2 units after BC addition. Under LN, BC addition significantly increased NH4+-N (17.8-46.9%), total N (15.4-38.4%), and soil organic carbon (19.9-24.0%) in the 0-10 cm profile, but decreased NH4+-N in the 20-30 cm soil profile and NO3--N in the 10-30 cm profile by 13.8-28.5% and 13.0-34.9%, respectively. BC had an increasing effect on the available phosphorus, the contents of which in the 10-20 and 30-40 cm soil profiles under LN and 20-30 cm profile under HN were significantly elevated by 14.1%, 24.0%, and 23.27%, respectively. However, BC exerted no effect on the available potassium in the soil profile. BC had a strong improving effect (15.3%) on the wheat yield, especially the N144 + BC0.5% treatment, which could be compared to the HN treatment, but there was no yield-increasing effect when high N fertilizer was supplied. In summary, BC improved the fertility of agriculture soil (0-20 cm) with wheat. In particular, low N inputs together with an appropriate rate of BC (0.5 wt%) could not only achieve the low inputs but also the high outputs in wheat production. In future study, we will compare the effects of multiple doses of N and BC on soil fertility and crop production.

Keywords: biochar; nitrogen; nutrient transport; soil fertility; soil profile.