Association between TyG index trajectory and new-onset lean NAFLD: a longitudinal study

Front Endocrinol (Lausanne). 2024 Feb 27:15:1321922. doi: 10.3389/fendo.2024.1321922. eCollection 2024.

Abstract

Objective: The purpose of this manuscript is to identify longitudinal trajectories of changes in triglyceride glucose (TyG) index and investigate the association of TyG index trajectories with risk of lean nonalcoholic fatty liver disease (NAFLD).

Methods: Using data from 1,109 participants in the Health Management Cohort longitudinal study, we used Latent Class Growth Modeling (LCGM) to develop TyG index trajectories. Using a Cox proportional hazard model, the relationship between TyG index trajectories and incident lean NAFLD was analyzed. Restricted cubic splines (RCS) were used to visually display the dose-response association between TyG index and lean NAFLD. We also deployed machine learning (ML) via Light Gradient Boosting Machine (LightGBM) to predict lean NAFLD, validated by receiver operating characteristic curves (ROCs). The LightGBM model was used to create an online tool for medical use. In addition, NAFLD was assessed by abdominal ultrasound after excluding other liver fat causes.

Results: The median age of the population was 46.6 years, and 440 (39.68%) of the participants were men. Three distinct TyG index trajectories were identified: "low stable" (TyG index ranged from 7.66 to 7.71, n=206, 18.5%), "moderate stable" (TyG index ranged from 8.11 to 8.15, n=542, 48.8%), and "high stable" (TyG index ranged from 8.61 to 8.67, n=363, 32.7%). Using a "low stable" trajectory as a reference, a "high stable" trajectory was associated with an increased risk of lean-NAFLD (HR: 2.668, 95% CI: 1.098-6.484). After adjusting for baseline age, WC, SBP, BMI, and ALT, HR increased slightly in "moderate stable" and "high stable" trajectories to 1.767 (95% CI:0.730-4.275) and 2.668 (95% CI:1.098-6.484), respectively. RCS analysis showed a significant nonlinear dose-response relationship between TyG index and lean NAFLD risk (χ2 = 11.5, P=0.003). The LightGBM model demonstrated high accuracy (Train AUC 0.870, Test AUC 0.766). An online tool based on our model was developed to assist clinicians in assessing lean NAFLD risk.

Conclusion: The TyG index serves as a promising noninvasive marker for lean NAFLD, with significant implications for clinical practice and public health policy.

Keywords: health management; latent class growth model; lean nonalcoholic fatty liver disease; trajectory; triglyceride-glucose index.

MeSH terms

  • Female
  • Glucose
  • Humans
  • Longitudinal Studies
  • Machine Learning
  • Male
  • Middle Aged
  • Non-alcoholic Fatty Liver Disease*
  • Triglycerides

Substances

  • Glucose
  • Triglycerides

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by National Natural Science Foundation of China (72101236); China Postdoctoral Science Foundation (2022M722900); Collaborative Innovation Project of Zhengzhou City (XTCX2023006); Nursing Team Project of the First Affiliated Hospital of Zhengzhou University (HLKY2023005).