The 3-quinuclidinone reductase plays an irreplaceable role in the biopreparation of (R)-3-quinuclidinol, an intermediate vital for synthesis of various pharmaceuticals. Thermal robustness is a critical factor for enzymatic synthesis in industrial applications. This study characterized a new 3-quinuclidinone reductase, named SaQR, with significant thermal stability. The SaQR was overexpressed in a GST-fused state, and substrate and cofactor screening were conducted. Additionally, three-dimensional structure prediction using AlphaFold and analysis were performed, along with relevant thermostability tests, and the evaluation of factors influencing enzyme activity. The findings highlight the remarkable thermostability of SaQR, retaining over 90% of its activity after 72 h at 50°C, with an optimal operational temperature of 85°C. SaQR showed typical structural traits of the SDR superfamily, with its cofactor-determining residue being aspartic acid, conferring nicotinamide adenine dinucleotide (NAD(H)) preference. Moreover, K+ and Na+, at a concentration of 400 mM, could significantly enhance the activity, while Mg2+ and Mn2+ only display inhibitory effects within the tested concentration range. The findings of molecular dynamics simulations suggest that high temperatures may disrupt the binding of enzyme to substrate by increasing the flexibility of residues 205-215. In conclusion, this study reports a novel 3-quinuclidinone reductase with remarkable thermostability.
Keywords: 3-Quinuclidinone reductase; Catalytic activity; Protein expression; Thermostability.
Copyright © 2024. Published by Elsevier B.V.