The study of loading mode with in-vitro fatigue testing for mitral annuloplasty ring

J Biomech. 2024 Mar:166:112047. doi: 10.1016/j.jbiomech.2024.112047. Epub 2024 Mar 8.

Abstract

To maintain the physiological dynamics of the mitral annulus, mitral annuloplasty rings (MAR) must be flexible. Enhanced flexibility implies decreased resistance to fatigue and potential for fatigue fracture. This study established new methods to test the flexible fatigue life of MAR in-vitro using numerical analysis; the purpose is that the fatigue test could reflect the real stress distribution in-vivo. Based on the conventional test methods (C1, D1), this paper presents a novel test method (C2, D2). Four testing methods for open-end annuloplasty rings (C1, C2) and closed-end annuloplasty rings (D1, D2) were modelled and their stress distribution calculated by finite element analysis. The mean absolute error (Χ) and the Pearson correlation coefficient (Φ) were used to quantify the difference in stress distribution between the loading modes in-vivo and in-vitro. For closed-end annuloplasty rings, the novel test method (D2) is not obvious better than conventional test methods(D1) in duplicating the stress distribution (ΦD1 = 0.88 vs ΦD2 = 0.92). However, the maximum values of stress in the novel test method are closer to the maximum value of stress under in-vivo loading (ΧD1 = 5.2Mpa vs ΧD2 = 4.4Mpa). For open-end annuloplasty rings, the novel test method(C2) is obviously superior to the conventional test method(C1) in duplicating both the stress distribution and the stress peak values of the in-vivo loading (ΦC1 = 0.22 vs ΦC2 = 0.98; ΧC1 = 59.1Mpa vs ΧC2 = 11.0Mpa). The in-vitro loading methods described in this article more closely approximated in-vivo conditions compared to traditional methods. They are simpler to operate, more efficient and can help manufacturers expedite new product development, assist regulatory agencies with product quality oversight.

Keywords: Fatigue Test; Finite Element Analysis; In -Vitro Testing; Loading Mode; Mitral Annuloplasty Ring.

MeSH terms

  • Heart Valve Prosthesis Implantation*
  • Heart Valve Prosthesis*
  • Humans
  • Materials Testing
  • Mitral Valve / physiology
  • Mitral Valve / surgery
  • Mitral Valve Annuloplasty* / methods
  • Mitral Valve Insufficiency* / surgery
  • Prosthesis Design