Endothelial cell-derived extracellular vesicles expressing surface VCAM1 promote sepsis-related acute lung injury by targeting and reprogramming monocytes

J Extracell Vesicles. 2024 Mar;13(3):e12423. doi: 10.1002/jev2.12423.

Abstract

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common life-threatening syndrome with no effective pharmacotherapy. Sepsis-related ARDS is the main type of ARDS and is more fatal than other types. Extracellular vesicles (EVs) are considered novel mediators in the development of inflammatory diseases. Our previous research suggested that endothelial cell-derived EVs (EC-EVs) play a crucial role in ALI/ARDS development, but the mechanism remains largely unknown. Here, we demonstrated that the number of circulating EC-EVs was increased in sepsis, exacerbating lung injury by targeting monocytes and reprogramming them towards proinflammatory macrophages. Bioinformatics analysis and further mechanistic studies revealed that vascular cell adhesion molecule 1 (VCAM1), overexpressed on EC-EVs during sepsis, activated the NF-κB pathway by interacting with integrin subunit alpha 4 (ITGA4) on the monocyte surface, rather than the tissue resident macrophage surface, thereby regulating monocyte differentiation. This effect could be attenuated by decreasing VCAM1 levels in EC-EVs or blocking ITGA4 on monocytes. Furthermore, the number of VCAM1+ EC-EVs was significantly increased in patients with sepsis-related ARDS. These findings not only shed light on a previously unidentified mechanism underling sepsis-related ALI/ARDS, but also provide potential novel targets and strategies for its precise treatment.

Keywords: ALI/ARDS; endothelial cell; extracellular vesicle; monocyte; sepsis.

MeSH terms

  • Acute Lung Injury* / metabolism
  • Endothelial Cells / metabolism
  • Extracellular Vesicles* / metabolism
  • Humans
  • Monocytes* / metabolism
  • Respiratory Distress Syndrome / metabolism
  • Sepsis* / complications
  • Sepsis* / metabolism
  • Vascular Cell Adhesion Molecule-1* / metabolism

Substances

  • Vascular Cell Adhesion Molecule-1