Background: Inguinal hernia is a relatively common condition. Most patients with inguinal hernia require surgery. At present, mesh repair is one of the most effective methods to treat inguinal hernia, but insertion of the mesh can cause inflammation. Dexamethasone (DEX) can treat inflammation, but the mechanism by which DEX alleviates inflammation caused by inguinal hernia mesh placement remains unclear.
Method: We randomly divided rats into groups: negative control (NC), inguinal hernia (IH), polypropylene mesh (PM), DEX treatment, and miR-155 treatment groups. RT-qPCR was performed to determine the expression of miR-155. ELISA was implemented to determine the secretion of IL-1β, IL-6, and IL-18. Western blotting was used to detect caspase-1, JAK1, p-JAK1, STAT3, and p-STAT3 expression. A dual-luciferase reporter gene array identified a connection between miR-155 and JAK1.
Results: The results revealed that the expression of miR-155, IL-1β, IL-6, and IL-18 was upregulated in the PM group. After DEX treatment, the secretion of miR-155, caspase-1, IL-1β, IL-6, and IL-18 decreased. Dual luciferase results confirmed that miR-155 induced the targeted downregulation of JAK1, while a miR-155 mimic reversed the therapeutic effect of DEX, and the expression levels of p-JAK1 and p-STAT3 increased.
Conclusion: DEX regulates the JAK1/STAT3 signaling pathway through miR-155 to relieve inflammation caused by inguinal hernia meshes.
Keywords: Dexamethasone; Inflammatory; Inguinal hernia meshes; miR-155.
© 2024. The Author(s), under exclusive licence to Springer-Verlag France SAS, part of Springer Nature.