NaSn2F5 nanocluster composed of nanoparticles with matched lattices induced by dislocations: Accelerated sodium-ion transport via in situ oxidation in solid-state sodium metal battery

J Colloid Interface Sci. 2024 Jun 15:664:824-837. doi: 10.1016/j.jcis.2024.03.086. Epub 2024 Mar 12.

Abstract

Na metal batteries using inorganic solid-state electrolytes (SSEs) have attracted extensive attention due to their superior safety and high energy density. However, their development is plagued by the unclear structural/volumetric evolution of SSEs and the corresponding Na+ migration mechanisms. In this work, NaSn2F5 (NSF) clusters are composed of nanoparticles (NPs) with matched lattices induced by dislocations, which can mitigate the volume swelling/shrinkage of the NPs. NSF behaves like a single ion conductor with a high Na+ transference number (tNa+) of 0.79. Specially, the ionic conductivity (σ) of NSF is increased from 7.64 × 10-6 to 5.42 × 10-5 S cm-1 after partial irreversible oxidation of Sn2+ (0.118 Å) → Sn4+ (0.069 Å) with the shrunk ionic radius during the charge process, giving more spaces for Na+ migration. Furthermore, a poly(acrylonitrile)-NaSn2F5-NaPF6 composite polymer electrolyte (NSF CPE) was fabricated with a σ of 4.13 × 10-4 S cm-1 and a tNa+ of 0.60. The NSF CPE-based symmetric cell can operate over 3000 h due to the couplings between the different components in NSF CPE, which is beneficial for ion transfer and the construction of stable solid electrolyte interface. And the quasi-solid-state Na|NSF CPE|Na3V2(PO4)3 full cell displays excellent electrochemical performance.

Keywords: Dislocation; Ionic conductivity; Lattice-matching; NaSn(2)F(5); Solid-state sodium metal battery.