Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma

BMC Womens Health. 2024 Mar 19;24(1):182. doi: 10.1186/s12905-024-03001-6.

Abstract

Background: Surgery combined with radiotherapy substantially escalates the likelihood of encountering complications in early-stage cervical squamous cell carcinoma(ESCSCC). We aimed to investigate the feasibility of Deep-learning-based radiomics of intratumoral and peritumoral MRI images to predict the pathological features of adjuvant radiotherapy in ESCSCC and minimize the occurrence of adverse events associated with the treatment.

Methods: A dataset comprising MR images was obtained from 289 patients who underwent radical hysterectomy and pelvic lymph node dissection between January 2019 and April 2022. The dataset was randomly divided into two cohorts in a 4:1 ratio.The postoperative radiotherapy options were evaluated according to the Peter/Sedlis standard. We extracted clinical features, as well as intratumoral and peritumoral radiomic features, using the least absolute shrinkage and selection operator (LASSO) regression. We constructed the Clinical Signature (Clinic_Sig), Radiomics Signature (Rad_Sig) and the Deep Transformer Learning Signature (DTL_Sig). Additionally, we fused the Rad_Sig with the DTL_Sig to create the Deep Learning Radiomic Signature (DLR_Sig). We evaluated the prediction performance of the models using the Area Under the Curve (AUC), calibration curve, and Decision Curve Analysis (DCA).

Results: The DLR_Sig showed a high level of accuracy and predictive capability, as demonstrated by the area under the curve (AUC) of 0.98(95% CI: 0.97-0.99) for the training cohort and 0.79(95% CI: 0.67-0.90) for the test cohort. In addition, the Hosmer-Lemeshow test, which provided p-values of 0.87 for the training cohort and 0.15 for the test cohort, respectively, indicated a good fit. DeLong test showed that the predictive effectiveness of DLR_Sig was significantly better than that of the Clinic_Sig(P < 0.05 both the training and test cohorts). The calibration plot of DLR_Sig indicated excellent consistency between the actual and predicted probabilities, while the DCA curve demonstrating greater clinical utility for predicting the pathological features for adjuvant radiotherapy.

Conclusion: DLR_Sig based on intratumoral and peritumoral MRI images has the potential to preoperatively predict the pathological features of adjuvant radiotherapy in early-stage cervical squamous cell carcinoma (ESCSCC).

Keywords: Adjuvant radiotherapy; Cervical squamous cell carcinoma; Deep learning; Magnetic resonance imaging; Radiomics.

MeSH terms

  • Carcinoma, Squamous Cell* / diagnostic imaging
  • Carcinoma, Squamous Cell* / radiotherapy
  • Deep Learning*
  • Female
  • Humans
  • Magnetic Resonance Imaging
  • Radiomics
  • Radiotherapy, Adjuvant
  • Retrospective Studies
  • Uterine Cervical Neoplasms* / diagnostic imaging
  • Uterine Cervical Neoplasms* / radiotherapy