Capturing and converting CO2 through artificial photosynthesis using photoactive, porous materials is a promising approach for addressing increasing CO2 concentrations. Porphyrinic Zr-based metal-organic frameworks (MOFs) are of particular interest as they incorporate a photosensitizer in the porous structure. Herein, the initial step of the artificial photosynthesis is studied: CO2 sorption and activation in the presence of water. A combined vibrational and visible spectroscopic approach was used to monitor the adsorption of CO2 into PCN-222 and PCN-223 MOFs, and the photophysical changes of the porphyrinic linker as a function of water concentration. A shift in CO2 sorption site and bending of the porphyrin macrocycle in response to humidity was observed, and CO2/H2O competition experiments revealed that the exchange of CO2 with H2O is pore-size dependent. Therefore, humidity and pore-size can be used to tune CO2 sorption, CO2 capacity, and light harvesting in porphyrinic MOFs, which are key factors for CO2 photoreduction.
Keywords: Adsorption; CO2 capture; artificial photosynthesis; metal-organic framework; spectroscopy.
© 2023 The Authors. ChemCatChem published by Wiley-VCH GmbH.