Phenanthroline Derived N-Doped Carbon Dots as Robust Metal-Free Photocatalysts for PET-RAFT Polymerization and Polymerization-Induced Self-Assembly

Small. 2024 Aug;20(32):e2309893. doi: 10.1002/smll.202309893. Epub 2024 Mar 22.

Abstract

Metal-free organic photocatalysts for photo-mediated reversible deactivation radical polymerization (photo-RDRP) are witnessed to make increasing advancement in the precise synthesis of polymers. However, challenges still exist in the development of high-efficiency and environmentally sustainable carbon dots (CDs)-based organocatalysts. Herein, N-doped CDs derived from phenanthroline derivative (Aphen) are prepared as metal-free photocatalysts for photoinduced electron transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization. The introduction of phenanthroline structure enhances the excited state lifetime of CDs and expands the conjugated length of their internal structure to enable the light-absorption to reach green light region, thereby enhancing photocatalytic activity. The as-designed CDs exhibit unprecedented photocatalytic capacity in photopolymerization even in large-volume reaction (100 mL) with high monomer conversion and narrow polymer dispersity (Mw/Mn < 1.20) under green light. The photocatalytic system is compatible with PET-RAFT polymerization of numerous monomers and the production of high molecular weight polyacrylate (Mn >250 000) with exquisite spatiotemporal control. Above results confirm the potential of CDs as photocatalyst, which has not been achieved with other CDs catalysts used in photo-RDRP. In addition, the construction of fluorescent polymer nanoparticles using CDs as both photocatalyst and phosphor through photoinitiated polymerization-induced self-assembly (Photo-PISA) technology is successfully demonstrated for the first time.

Keywords: PET‐RAFT polymerization; PISA; carbon dots; metal‐free photocatalysts; phenanthroline.