Biochar and hydrochar application influence soil ammonia volatilization and the dissolved organic matter in salt-affected soils

Sci Total Environ. 2024 May 20:926:171845. doi: 10.1016/j.scitotenv.2024.171845. Epub 2024 Mar 21.

Abstract

Biochar, which including pyrochar (PBC) and hydrochar (HBC), has been tested as a soil enhancer to improve saline soils. However, the effects of PBC and HBC application on ammonia (NH3) volatilization and dissolved organic matter (DOM) in saline paddy soils are poorly understood. In this research, marsh moss-derived PBC and HBC biochar types were applied to paddy saline soils at 0.5 % (w/w) and 1.5 % (w/w) rates to assess their impact on soil NH3 volatilization and DOM using a soil column experiment. The results revealed that soil NH3 volatilization significantly increased by 56.1 % in the treatment with 1.5 % (w/w) HBC compared to the control without PBC or HBC. Conversely, PBC and the lower application rate of HBC led to decrease in NH3 volatilization ranging from 2.4 % to 12.1 %. Floodwater EC is a dominant factor in NH3 emission. Furthermore, the fluorescence intensities of the four fractions (all humic substances) were found to be significantly higher in the 1.5 % (w/w) HBC treatment applied compared to the other treatments, as indicated by parallel factor analysis modeling. This study highlights the potential for soil NH3 losses and DOM leaching in saline paddy soils due to the high application rate of HBC. These findings offer valuable insights into the effects of PBC and HBC on rice paddy saline soil ecosystems.

Keywords: Ammonia volatilization; Biochar; Dissolved organic matter (DOM); Hydrochar; Saline soils.