Cu2+ as an important trace element plays an essential role in various biologic processes due to the unique redox active nature. For this reason, much effort has been made to develop effective methods for Cu2+ detection. In this study, a novel structure fluorescent chemosensor, 1-(6-(((5-(5, 5-difluoro-1, 3, 7, 9-tetramethyl-5H-4λ4, 5λ4-dipyrrolo[1, 2-c:2', 1'-f][1, 3, 2] diazaborinin-10-yl)quinolin-8-yl)oxy)methyl)pyridin-2-yl)-N, N-bis(pyridin-2-ylmethyl)methanamine (1), was synthesized and characterized by 1H and 13C nuclear magnetic resonance spectroscopy, and electrospray ionization mass spectrometry. Sensor 1 showed an obviously "on-off" fluorescence response to Cu2+ with a 1:1 binding stoichiometry by UV-vis and fluorescence spectrophotometry. The detection limit of sensor 1 to Cu2+ was determined to be 1.9 µM, and the stable pH range for Cu2+ detection was from 3 to 13. Sensor 1 can be used for recognition and detection of tyrosinase in potatoes.
Keywords: 8-hydroxyquinoline; BODIPY; Cu2+; Fluorescent chemosensors; Tyrosinase.
© 2024. The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry.