Intramolecular Friedel-Crafts Reaction with Trifluoroacetic Acid: Synthesizing Some New Functionalized 9-Aryl/Alkyl Thioxanthenes

ACS Omega. 2024 Mar 8;9(11):12596-12601. doi: 10.1021/acsomega.3c07150. eCollection 2024 Mar 19.

Abstract

In this study, a series of halogen-substituted thioxanthenes were synthesized because the most important and biologically active derivatives of xanthenes are thioxanthenes. In order to obtain new thioxanthene derivatives, first, the starting molecules were synthesized by the appropriate reaction methods in two steps. The intramolecular Friedel-Crafts alkylation (FCA) method was used to convert the prepared three aromatic substituted starting alcohol compounds to their corresponding thioxanthenes by cyclization. For the intramolecular FCA reaction of secondary alcohols, which are the starting compounds (1a-1t), organic Bro̷nsted acids, which require more innovative, easier, and suitable reaction conditions, were used instead of halide reagents with corrosive effects as classical FCA catalysts. Trifluoroacetic acid was determined to be the organocatalyst with the best yield. Therefore, some original 9-aryl/alkyl thioxanthene derivatives (2a-2t) were synthesized using the optimized FCA method. In addition, a new sulfone derivative of thioxanthene 3i was prepared by performing the oxidation reaction with one of the obtained new thioxanthene 2i. Thioxanthenes and their derivatives are important heterocyclic structures that contain pharmacologically valuable sulfur and are used in the treatment of psychotic diseases such as Alzheimer's or schizophrenia, as well as a number of potent biological activities.