Systemic intracellular analysis for balancing complex biosynthesis in a transcriptionally deregulated Escherichia coli l-Methionine producer

Microb Biotechnol. 2024 Mar;17(3):e14433. doi: 10.1111/1751-7915.14433.

Abstract

l-Methionine (l-Met) has gained remarkable interest due to its multifaceted and versatile applications in the fields of nutrition, pharmaceuticals and clinical practice. In this study, the fluxes of the challenging l-Met biosynthesis in the producer strain Escherichia coli (E. coli) DM2853 were fine-tuned to enable improved l-Met production. The potential bottlenecks identified in sulfur assimilation and l-Met synthesis downstream of O-succinyl-l-homoserine (OSHS) were addressed by overexpressing glutaredoxin 1 (grxA), thiosulfate sulfurtransferase (pspE) and O-succinylhomoserine lyase (metB). Although deemed as a straightforward target for improving glucose-to-Met conversion, the yields remained at approximately 12%-13% (g/g). Instead, intracellular l-Met pools increased by up to four-fold with accelerated kinetics. Overexpression of the Met exporter ygaZH may serve as a proper valve for releasing the rising internal Met pressure. Interestingly, the export kinetics revealed maximum saturated export rates already at low growth rates. This scenario is particularly advantageous for large-scale fermentation when product formation is ideally uncoupled from biomass formation to achieve maximum performance within the technical limits of large-scale bioreactors.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Escherichia coli Proteins* / genetics
  • Escherichia coli Proteins* / metabolism
  • Escherichia coli* / genetics
  • Escherichia coli* / metabolism
  • Fermentation
  • Methionine / metabolism
  • Racemethionine

Substances

  • Methionine
  • Racemethionine
  • Escherichia coli Proteins