Pituitary neuroendocrine tumors (PitNETs) are generally benign but comprise an aggressive, invasive, therapy-resistant, metastatic subset, underpinning a need for novel therapeutic targets. PitNETs exhibit low mutation rates but are associated with conditions linked to alternative splicing, an alternative oncogene pathway activation mechanism. PitNETs express the neurotrophin receptor TrkA, which exhibits oncogenic alternative TrkAIII splicing in other neuroendocrine tumors. We, therefore, assessed whether TrkAIII splicing represents a potential oncogenic participant in PitNETs. TrkAIII splicing was RT-PCR assessed in 53 PitNETs and TrkA isoform(s) expression and activation were assessed by confocal immunofluorescence. TrkAIII splicing was also compared to HIF1α, HIF2α, SF3B1, SRSF2, U2AF1, and JCPyV large T antigen mRNA expression, Xbp1 splicing, and SF3B1 mutation. TrkAIII splicing was detected in all invasive and most non-invasive PitNETs and was significantly elevated in invasive cases. In PitNET lineages, TrkAIII splicing was significantly elevated in invasive PIT1 PitNETs and high in invasive and non-invasive SF1 and TPIT lineages. Immunoreactivity consistent with TrkAIII activation characterized PitNET expressing TrkAIII mRNA, and invasive Pit1 PitNETs exhibited elevated HIF2α expression. TrkAIII splicing did not associate with SF3B1 mutations, altered SF3B1, SRSF2, and U2AF1 or JCPyV large T antigen expression, or Xbp1 splicing. Therefore, TrkAIII splicing is common in PitNETs, is elevated in invasive, especially PIT1 tumors, can result in intracellular TrkAIII activation, and may involve hypoxia. The data support a role for TrkAIII splicing in PitNET pathogenesis and progression and identify TrkAIII as a novel potential target in refractory PitNETs.
Keywords: HIF2α; JCPyV large T antigen; PitNETs; TrkAIII splice variant; Xbp1; alternative splicing; hotspot SF3B1 mutation; splice factors SF3B1, U2AF and SRSF2.