Chronic low back pain, a major cause of disability with a great global socioeconomic impact, has been inextricably associated with intervertebral disc degeneration. On the other hand, an enhanced number of senescent cells has been identified in aged and degenerated intervertebral discs and their senescence-associated secretory phenotype (SASP) has been connected with qualitative/quantitative alterations in the extracellular matrix and ultimately with the disturbance of tissue homeostasis. Given that selective elimination of senescent cells (by the so-called senolytics) or amendment of their secretome towards a less catabolic/inflammatory phenotype (by molecules known as senomorphics) has been reported to alleviate symptoms of several age-associated diseases and to improve tissue quality during aging, here we will review the emerging role of senolytic and senomorphic agents derived from plants and natural products against intervertebral disc degeneration. The mode of action of these senotherapeutics, as well as the challenges in their practical application, will also be explicitly discussed in an attempt to direct their more targeted and effective use in exclusive or combinatorial therapeutic schemes for the prevention and/or treatment of disc degenerative disorders.
Keywords: cellular senescence; extracellular matrix (ECM); intervertebral disc; low back pain; plant-derived metabolites; senescence-associated secretory phenotype (SASP); senolytics; senomorphics.