Viral respiratory infections represent a major threat to the population's health globally. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19 disease and in some cases the symptoms can be confused with Influenza disease caused by the Influenza A viruses. A simple, fast, and selective assay capable of identifying the etiological agent and differentiating the diseases is essential to provide the correct clinical management to the patient. Herein, we described the development of a genomagnetic assay for the selective capture of viral RNA from SARS-CoV-2 and Influenza A viruses in saliva samples and employing a simple disposable electrochemical device for gene detection and quantification. The proposed method showed excellent performance detecting RNA of SARS-CoV-2 and Influenza A viruses, with a limit of detection (LoD) and limit of quantification (LoQ) of 5.0 fmol L-1 and 8.6 fmol L-1 for SARS-CoV-2, and 1.0 fmol L-1 and 108.9 fmol L-1 for Influenza, respectively. The genomagnetic assay was employed to evaluate the presence of the viruses in 36 saliva samples and the results presented similar responses to those obtained by the real-time reverse transcription-polymerase chain reaction (RT-PCR), demonstrating the reliability and capability of a method as an alternative for the diagnosis of COVID-19 and Influenza with point-of-care capabilities.
Keywords: 3D printing; Disposable electrodes; Genomagnetic assay; Molecular test; RNA detection.
Copyright © 2024 Elsevier B.V. All rights reserved.