High-throughput mutagenesis and screening approach for the identification of drug-resistant mutations in the rifampicin resistance-determining region of mycobacteria

Int J Antimicrob Agents. 2024 Jun;63(6):107158. doi: 10.1016/j.ijantimicag.2024.107158. Epub 2024 Mar 26.

Abstract

Rifampicin is the most powerful first-line antibiotic for tuberculosis, which is caused by Mycobacterium tuberculosis. Although accumulating evidence from sequencing data of clinical M. tuberculosis isolates suggested that mutations in the rifampicin-resistance-determining region (RRDR) are strongly associated with rifampicin resistance, the comprehensive characterisation of RRDR polymorphisms that confer this resistance remains challenging. By incorporating I-SceI sites for I-SceI-based integrant removal and utilizing an L5 swap strategy, we efficiently replaced the integrated plasmid with alternative alleles, making mass allelic exchange feasible in mycobacteria. Using this method to establish a fitness-related gain-of function screen, we generated a mutant library that included all single-amino-acid mutations in the RRDR, and identified the important positions corresponding to some well-known rifampicin-resistance mutations (Q513, D516, S522, H525, R529, S531). We also detected a novel two-point mutation located in the RRDR confers a fitness advantage to M. smegmatis in the presence or absence of rifampicin. Our method provides a comprehensive insight into the growth phenotypes of RRDR mutants and should facilitate the development of anti-tuberculosis drugs.

Keywords: Fitness; Mycobacteria; Rifampicin; Single amino-acid mutation.

MeSH terms

  • Antitubercular Agents / pharmacology
  • Drug Resistance, Bacterial* / genetics
  • High-Throughput Screening Assays / methods
  • Humans
  • Microbial Sensitivity Tests
  • Mutagenesis
  • Mutation
  • Mycobacterium smegmatis / drug effects
  • Mycobacterium smegmatis / genetics
  • Mycobacterium tuberculosis* / drug effects
  • Mycobacterium tuberculosis* / genetics
  • Rifampin* / pharmacology

Substances

  • Rifampin
  • Antitubercular Agents