Wounding and exogenous auxin are needed to induce adventitious roots in chestnut microshoots. However, the specific inductive role of wounding has not been characterized in this species. In the present work, two main goals were established: First, we prompted to optimize exogenous auxin treatments to improve the overall health status of the shoots at the end of the rooting cycle. Second, we developed a time-series transcriptomic analysis to compare gene expression in response to wounding alone and wounding plus auxin, focusing on the early events within the first days after treatments. Results suggest that the expression of many genes involved in the rooting process is under direct or indirect control of both stimuli. However, specific levels of expression of relevant genes are only attained when both treatments are applied simultaneously, leading to the successful development of roots. In this sense, we have identified four transcription factors upregulated by auxin (CsLBD16, CsERF113, Cs22D and CsIAA6), with some of them also being induced by wounding. The highest expression levels of these genes occurred when wounding and auxin treatments were applied simultaneously, correlating with the rooting response of the shoots. The results of this work clarify the genetic nature of the wounding response in chestnut, its relation to adventitious rooting, and might be helpful in the development of more specific protocols for the vegetative propagation of this species.
Keywords: adventitious roots; auxin; callus; chestnut; microshoots; transcriptomics; wounding.