Gram-negative, rod-shaped, and aerobic bacteria designated chi1T and chi5T were isolated from the root of Suaeda japonica Makino. Phylogenetics utilizing 16S rRNA and whole-genome sequences of the two novel strains chi1T and chi5T confirmed that they were related to the genera Marinobacter and Wenyingzhuangia, respectively. For the novel strains chi1T and chi5T, the digital DNA-DNA hybridization values (19-20% and 22.1-36.6%, respectively) and average nucleotide identity values (74.4-76.5% and 79.1-88.9%, respectively) fell within the range for the genera Marinobacter and Wenyingzhuangia, respectively. Pangenome analyses of the novel strains chi1T and chi5T revealed 357 and 368 singletons genes, respectively. The genomic DNA G + C contents of the strains chi1T and chi5T were 57.2% and 31.5%, respectively. The major fatty acids of strain chi1T were C12:0, C16:0, and summed feature 3 (C16:1ω6c and/or C16:1ω7c), while those of the strain chi5T were iso-C15:0 3OH, iso-C17:0 3OH, and iso-C15:0. Data from the phylogenetic, phylogenomic, pangenome, genomic, physiological, and biochemical analyses indicated that the novel strains were distinct. Therefore, we propose the names Marinobacter suadae (type strain chi1T = KACC 23259T = TBRC 17652T) and Wenyingzhangia gilva (type strain chi5T = KACC 23262T = TBRC 17900T) for the studied bacterial strains.
Keywords: Marinobacter; Suaeda japonica Makino; Up-to-Date Bacterial Core Gene set; Wenyingzhuangia; genomic; pangenome; whole genome.