Optimizing Binding Site Spacing in Fluidic Self-Assembly for Enhanced Microchip Integration Density

Micromachines (Basel). 2024 Feb 22;15(3):300. doi: 10.3390/mi15030300.

Abstract

This manuscript presents a comprehensive study on the assembly of microchips using fluidic self-assembly (FSA) technology, with a focus on optimizing the spacing between binding sites to improve yield and assembly. Through a series of experiments, we explored the assembly of microchips on substrates with varying binding site spacings, revealing the impact of spacing on the rate of undesired chip assembly across multiple sites. Our findings indicate a significant reduction in incorrect assembly rates as the spacing increases beyond a critical threshold of 140 μm. This study delves into the mechanics of chip alignment within the fluid medium, hypothesizing that the extent of the alloy's grip on the chips at different spacings influences assembly outcomes. By analyzing cases of undesired assembly, we identified the relationship between binding site spacing and the area of chip contact, demonstrating a decrease in the combined left and right areas of chips as the spacing increases. The results highlight a critical spacing threshold, which, when optimized, could significantly enhance the efficiency and precision of microchip assembly processes using FSA technology. This research contributes to the field of microcomponent assembly, offering insights into achieving higher integration densities and precision in applications, such as microLED displays and augmented reality (AR) devices.

Keywords: augmented reality (AR); fluidic self-assembly; microLEDs; microchip; optoelectronic devices; packaging; patterning process; scalable assembly.