Elevating Supercapacitor Performance of Co3O4-g-C3N4 Nanocomposites Fabricated via the Hydrothermal Method

Micromachines (Basel). 2024 Mar 20;15(3):414. doi: 10.3390/mi15030414.

Abstract

The hydrothermal method has been utilized to synthesize graphitic carbon nitride (g-C3N4) polymers and cobalt oxide composites effectively. The weight percentage of g-C3N4 nanoparticles influenced the electrochemical performance of the Co3O4-g-C3N4 composite. In an aqueous electrolyte, the Co3O4-g-C3N4 composite electrode, produced with 150 mg of g-C3N4 nanoparticles, revealed remarkable electrochemical performance. With an increase in the weight percentage of g-C3N4 nanoparticles, the capacitive contribution of the Co3O4-g-C3N4 composite electrode increased. The Co3O4-g-C3N4-150 mg composite electrode shows a specific capacitance of 198 F/g. The optimized electrode, activated carbon, and polyvinyl alcohol gel with potassium hydroxide were used to develop an asymmetric supercapacitor. At a current density of 5 mA/cm2, the asymmetric supercapacitor demonstrated exceptional energy storage capacity with remarkable energy density and power density. The device retained great capacity over 6k galvanostatic charge-discharge (GCD) cycles, with no rise in series resistance following cyclic stability. The columbic efficiency of the asymmetric supercapacitor was likewise high.

Keywords: Co3O4 nanoparticles; graphic carbon nitride (g-C3N4); supercapacitor.