Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored. We hypothesized that integrin-matrix interactions contribute to PC migration from the vascular wall and conversion into interstitial myofibroblasts. Herein, pro-inflammatory tumor necrosis factor α (TNFα) or a fibrotic growth factor [transforming growth factor β1 (TGF-β1)] were used to evaluate human PC inflammatory and fibrotic phenotypes by assessing their migration, matrix deposition, integrin expression, and subsequent effects on endothelial dysfunction. Both TNFα and TGF-β1 treatment altered integrin expression and matrix protein deposition, but only fibrotic TGF-β1 drove PC migration in an integrin-dependent manner. In addition, integrin-dependent PC migration was correlated to changes in EC angiopoietin-2 levels, a marker of vascular instability. Finally, there was evidence of changes in vascular stability corresponding to disease state in human systemic sclerosis skin. This work shows that TNFα and TGF-β1 induce changes in PC integrin expression and matrix deposition that facilitate migration and reduce vascular stability, providing evidence that microvascular destabilization can be an early indicator of tissue fibrosis.
Copyright © 2024 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.