Biallelic pathogenic variants in ZNF335 are one of the genetic causes of microcephaly, reported only in the past decade. It regulates neural progenitor proliferation and neurogenesis by interacting with a H3K4 methyltransferase complex. Biallelic pathogenic ZNF335 variants predispose to neuronal cell death and aberrant differentiation, thus causing secondary microcephaly. These neurodevelopmental anomalies lead to imaging findings in the cortex, posterior fossa, and basal ganglia. We report an individual of Nepalese ancestry with a novel homozygous ZNF335 variant (c.3591 + 2dup) (p.?) (NM_022095.3) which on further RNA analysis confirmed a splice site variant in intron 23. The patient presented with primary microcephaly with atrophic cerebral hemispheres, oversimplification of gyri, basal ganglia, and corpus callosal atrophy. Literature review on the topic revealed a spectrum of brain abnormalities, which can present either with a primary or secondary microcephaly depending upon the underlying genetic variant.
Keywords: ZNF 335; microcephaly.
© 2024 Wiley Periodicals LLC.