Amyotrophic lateral sclerosis (ALS) diagnosis relies on signs of progressive damage to both lower motoneuron (LMN), given by clinical examination and electromyography (EMG), and upper motoneuron (UMN), given by clinical examination only. Recognition of UMN involvement, however, is still difficult, so that diagnostic delay often remains too long. Shortening the time to clinical and genetic diagnosis is essential in order to provide accurate information to patients and families, avoid time-consuming investigations and for appropriate care management. This study investigates whether combined patellar tendon reflex recording with motor-evoked potentials to the lower limbs (T-MEP-LL) is relevant to assess corticospinal function in ALS, so that it might serve as a tool improving diagnosis. T-MEP-LL were recorded in 135 patients with suspected motor neuron disease (MND) from February 2010 to March 2021. The sensitivity, specificity, and ability to improve diagnosis when added to Awaji and Gold Coast criteria were determined. The main finding of the study is that T-MEP-LL can detect UMN dysfunction with a 70% sensitivity and 63% specificity when UMN clinical signs are lacking. The sensitivity reaches 82% when considering all MND patients. Moreover, at first evaluation, using T-MEP-LL to quantify reflex briskness and to measure central conduction time, can improve the diagnostic accuracy. T-MEP-LL is easy to perform and does not need any electrical stimulation, making the test rapid, and painless. By the simultaneous quantification of both UMN and LMN system, it could also help to identify different phenotype with more accuracy than clinical examination in this broad-spectrum pathology. The question whether T-MEP-LL could further be a real biomarker need further prospective studies.
Keywords: Amyotrophic lateral sclerosis; Electrophysiological diagnosis; Motor-evoked potential; Progressive muscular atrophy; T-response; Upper motor neuron.
Copyright © 2024 The Authors. Published by Elsevier Masson SAS.. All rights reserved.