Photoperiod and temperature are two main factors in the growth of macroalgae, and changes in photoperiod and diurnal temperature difference exist in natural condition. In order to study the effects of photoperiod and diurnal temperature difference on the growth of green algae Ulva prolifera, we cultured this species under three light/dark cycles (light: dark = 10:14, 12:12 and 16:08) with constant (22 °C for light and dark period, noted as 22-22 °C) and diurnal temperature difference (22 °C and 16 °C for light and dark period, respectively, noted as 22-16 °C) conditions. The results showed that: 1) Compared with 10:14 light/dark cycle, the growth of U. prolifera under 12:12 light/dark cycle was significantly enhanced by 39% and 16% for 22-22 °C and 22-16 °C treatments, respectively, while the increase proportion decreased when the daylength increase from 12 h to 16 h. 2) The enhancement in growth induced by diurnal temperature difference was observed under 10:14 light/dark cycle, but not for 12:12 and 16:08 light/dark cycle treatments. 3) The Chl a content and photosynthetic rate increased under short light period and 22-22 °C conditions, while under 22-16 °C conditions, higher photosynthetic rate was observed under 12:12 light/dark cycle and no significant difference in Chl a content was observed. 4) Under 22-22 °C conditions, compared with 10:14 (L:D) treatment, the expression levels of proteins in light-harvesting complexes, PSII and carbon fixation were down regulated, while the photorespiration and pentose phosphate pathway (PPP) were up regulated by 16:08 light dark cycle. Then we speculate that the higher photosynthetic rate may be one compensation mechanism in short photoperiod, and under long light period condition the up regulations of photorespiration and PPP can be in charge of the decrease in enhancement growth induced by longer daylength.
Keywords: Diurnal temperature difference; Growth; Photoperiod; Photorespiration; Photosynthsis; Ulva prolifera.
Copyright © 2024 Elsevier Ltd. All rights reserved.