Myeloid-derived suppressor cells (MDSCs) comprise a heterogeneous population of myeloid origin and immature state, whose hallmark is the capacity to suppress T cells and other immune populations. In mice, the first approach to identify MDSCs relies in the measurement of their phenotypical markers: CD11b and GR-1. In addition, two main subtypes of MDSCs have been defined based on the expression of the following markers: CD11b+ Ly6G- Ly6C+ (monocytic-MDSCs, M-MDSCs) and CD11b+ Ly6G+ Ly6C+/low (polymorphonuclear-MDSCs, PMN-MDSCs). Since CD11b+ GR-1+ (Ly6C+/Ly6G+) MDSCs can increase significantly in peripheral blood during numerous acute or chronic processes, measuring alterations in the phenotypic markers CD11b and GR-1 could be important as a first step before assessing the suppressive function of the cells. In many cases it could be necessary to measure CD11b+ Gr-1+ cells from a minimum volume of peripheral blood cells without greatly affecting animal viability, since this approach would allow for further studies to be conducted on subsequent days, such as measuring parameters of the immune response or even survival in the context of the pathology under study. The following protocol describes a simple and optimized protocol for measuring the presence of CD11b+ GR-1+ (Ly6C+/Ly6G+) myeloid cells using 2+ channel flow cytometry, from a minimum volume of mouse peripheral blood obtained by facial vein puncture.
Keywords: Flow cytometry; Myeloid-derived suppressor cells; Peripheral blood; Protocol; Purification.
Copyright © 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.