Objective: This study was conducted to investigate the combined effect of genetic variation in the C3 gene and environmental factors on the risk of type 2 diabetes mellitus(T2DM) and coronary artery disease(CAD) in a population from Xinjiang, China.
Methods: We conducted a hospital-based case-control study with 896 participants (217 with T2DM+CAD and 679 healthy controls). A polymerase chain reaction-ligase detection reaction was used to identify and genotype TagSNPs in the C3 gene, and the influence of the interaction of two SNP loci (rs1047286 and rs11569562) with the environment on T2DM combined with CAD was evaluated through clinical data, statistical analysis of gene frequencies, and the formation of a gene-environment interaction model.
Results: We find that rs11569562 GG is an independent protective factor for T2DM and CAD (OR=0.353, p=0.012), and the variants at its locus may be closely associated with Activated Partial Thromboplastin Time (APTT), lipoprotein a (Lp(a)), Apolipoprotein A (APOA), Aspartate Aminotransferase (AST), Aspartate Aminotransferase (ALT) and AST/ALT levels (all P < 0.05); its GG genotype has significantly lower Gensini score and number of stenoses than the GA and AA genotypes. Multifactorial dimensionality reduction (MDR) finds a strong correlation between rs11569562 and AST (antagonistic effect) (4.44%); the role of rs11569562's influence remains strong in terms of the independent effects of each attribute (1.72%).
Conclusions: In this study, we find that variants in the C3 gene loci rs11569562 are associated with the incidence of type 2 diabetes mellitus combined with coronary heart disease in a Chinese population. It is expected to be an independent predictor of type 2 diabetes mellitus combined with coronary heart disease in the Chinese population. Rs11569562 may be associated with lipid levels and coagulation molecules.
Clinical trial registration: This trial registered on in 2014 at the China Clinical Trials Registry (ChiCTR-TRC-14005114).
Keywords: Type 2 diabetes mellitus; complement C3; coronary heart disease.
© 2024 Qiu et al.