Herein, the link between rearing environmental condition and metabolism was explored. Metabolite fingerprint datasets of black tiger shrimp (Penaeus monodon) from three production sites were collected and studied using matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and HPLC-MS/MS. Two compounds, benzisothiazolinone and hippuric acid, were identified to be potentially related to pollution in the rearing environment and showed different abundances in the analysed shrimp samples with different origins. Furthermore, metabolomic analysis on three shrimp species, black tiger shrimp, kuruma shrimp (Penaeus japonicus) and sword shrimp (Parapenaeopsis hardwickii), under an identical rearing environment was also conducted. Two compounds, diethanolamine and benzisothiazolinone, potentially linked with pollution in the rearing environment were identified. The present protocol holds promise to be extended to the studies of exploring the relationship between rearing environmental conditions and metabolism. Furthermore, the analysis of single-blind samples was conducted. The results show that specific metabolites can be utilized as markers for tracing the origins of shrimp samples. The present protocol holds potential for application in tracing the origin and species of certain seafoods.