Despite their longstanding use in environmental remediation, constructed wetlands (CWs) are still topical due to their sustainable and nature-based approach. While research and review publications have grown annually by 7.5 % and 37.6 %, respectively, from 2018 to 2022, a quantitative meta-analysis employing advanced statistics and machine learning to assess CWs has not yet been conducted. Further, traditional statistics of mean ± standard deviation could not convey the extent of confidence or uncertainty in results from CW studies. This study employed a 95 % bootstrap-based confidence interval and out-of-bag Random Forest-based driver analysis on data from 55 studies, totaling 163 cases of pilot and full-scale CWs. The study recommends, with 95 % confidence, median surface hydraulic loading rates (HLR) of 0.14 [0.11, 0.17] m/d for vertical flow-CWs (VF) and 0.13 [0.07, 0.22] m/d for horizontal flow-CWs (HF), and hydraulic retention time (HRT) of 125.14 [48.0, 189.6] h for VF, 72.00 [42.00, 86.28] h for HF, as practical for new CW design. Permutation importance results indicate influent COD impacted primarily on COD removal rate at 21.58 %, followed by HLR (16.03 %), HRT (12.12 %), and substrate height (H) (10.90 %). For TN treatment, influent TN and COD were the most significant contributors at 12.89 % and 10.01 %, respectively, while H (9.76 %), HRT (9.72 %), and HLR (5.87 %) had lower impacts. Surprisingly, while HRT and H had a limited effect on COD removal, they substantially influenced TN. This study sheds light on CWs' performance, design, and control factors, guiding their operation and optimization.
Keywords: Confidence interval; Constructed wetland; Machine learning; Meta-analysis; Wastewater; Water.
Copyright © 2024 Elsevier B.V. All rights reserved.