Introduction: Sicklepod [Cassia obtusifolia L. syn Senna obtusifolia (L.) H.S. Irwin & Barneby, Fabaceae] sprouts are promising ingredients with health-promoting benefits. Notwithstanding, the pharmacologically active compounds in sicklepod sprouts have not been studied or analysed in detail.
Objective: This study aimed to isolate and structurally identify phytochemicals showing α-glucosidase inhibitory activity in sicklepod sprouts and simultaneously quantify the compounds in the sprouts to determine the optimal cultivation method and germination time to maximise active compounds.
Method: A simultaneous high-performance liquid chromatography-ultraviolet (HPLC-UV) method with high sensitivity and accuracy was developed and used to analyse time-dependent changes in anthraquinone content during sicklepod germination.
Results: Thirteen anthraquinones were isolated and identified, of which six-chrysoobtusin, emodin, 1-O-methyl-2-methoxychrysophanol, 7-O-methylobtusin, chrysophanol, and physcion-showed moderate α-glucosidase inhibitory activity. The maximum content of anthraquinones in a sprout was observed on Day 5 under both light and dark conditions.
Conclusion: The findings of this study revealed that sicklepod sprouts which are promising functional food materials contain a variety of anthraquinones.
Keywords: Cassia obtusifolia L. syn Senna obtusifolia (L.) H.S. Irwin & Barneby; anthraquinones; high‐performance liquid chromatography (HPLC); sicklepod; sprout.
© 2024 John Wiley & Sons Ltd.