Background: Culture-free real-time sequencing of clinical metagenomic samples promises both rapid pathogen detection and antimicrobial resistance profiling. However, this approach introduces the risk of patient DNA leakage. To mitigate this risk, we need near-comprehensive removal of human DNA sequences at the point of sequencing, typically involving the use of resource-constrained devices. Existing benchmarks have largely focused on the use of standardized databases and largely ignored the computational requirements of depletion pipelines as well as the impact of human genome diversity.
Results: We benchmarked host removal pipelines on simulated and artificial real Illumina and Nanopore metagenomic samples. We found that construction of a custom kraken database containing diverse human genomes results in the best balance of accuracy and computational resource usage. In addition, we benchmarked pipelines using kraken and minimap2 for taxonomic classification of Mycobacterium reads using standard and custom databases. With a database representative of the Mycobacterium genus, both tools obtained improved specificity and sensitivity, compared to the standard databases for classification of Mycobacterium tuberculosis. Computational efficiency of these custom databases was superior to most standard approaches, allowing them to be executed on a laptop device.
Conclusions: Customized pangenome databases provide the best balance of accuracy and computational efficiency when compared to standard databases for the task of human read removal and M. tuberculosis read classification from metagenomic samples. Such databases allow for execution on a laptop, without sacrificing accuracy, an especially important consideration in low-resource settings. We make all customized databases and pipelines freely available.
Keywords: Mycobacterium tuberculosis; benchmark; host removal; metagenomics; taxonomic classification.
© The Author(s) 2024. Published by Oxford University Press GigaScience.