The 5HT2b Receptor in Alzheimer's Disease: Increased Levels in Patient Brains and Antagonist Attenuation of Amyloid and Tau Induced Dysfunction

J Alzheimers Dis. 2024;98(4):1349-1360. doi: 10.3233/JAD-240063.

Abstract

Background: Background: Neurodegenerative diseases manifest behavioral dysfunction with disease progression. Intervention with neuropsychiatric drugs is part of most multi-drug treatment paradigms. However, only a fraction of patients responds to the treatments and those responding must deal with drug-drug interactions and tolerance issues generally attributed to off-target activities. Recent efforts have focused on the identification of underexplored targets and exploration of improved outcomes by treatment with selective molecular probes.

Objective: As part of ongoing efforts to identify and validate additional targets amenable to therapeutic intervention, we examined levels of the serotonin 5-HT2b receptor (5-HT2bR) in Alzheimer's disease (AD) brains and the potential of a selective 5-HT2bR antagonist to counteract synaptic plasticity and memory damage induced by AD-related proteins, amyloid-β, and tau.

Methods: This work used a combination of biochemical, chemical biology, electrophysiological, and behavioral techniques. Biochemical methods included analysis of protein levels. Chemical biology methods included the use of an in vivo molecular probe MW071, a selective antagonist for the 5HT2bR. Electrophysiological methods included assessment of long-term potentiation (LTP), a type of synaptic plasticity thought to underlie memory formation. Behavioral studies investigated spatial memory and associative memory.

Results: 5HT2bR levels are increased in brain specimens of AD patients compared to controls. 5HT2bR antagonist treatment rescued amyloid-β and tau oligomer-induced impairment of synaptic plasticity and memory.

Conclusions: The increased levels of 5HT-2bR in AD patient brains and the attenuation of disease-related synaptic and behavioral dysfunctions by MW071 treatment suggest that the 5HT-2bR is a molecular target worth pursuing as a potential therapeutic target.

Keywords: 5HT2b receptor; Alzheimer’s disease; antagonist; long-term potentiation; memory.

MeSH terms

  • Alzheimer Disease* / metabolism
  • Amyloid beta-Peptides / metabolism
  • Animals
  • Brain / metabolism
  • Disease Models, Animal
  • Hippocampus / metabolism
  • Humans
  • Long-Term Potentiation / physiology
  • Memory Disorders / drug therapy
  • Spatial Memory

Substances

  • Amyloid beta-Peptides
  • HTR2B protein, human