Moiré-pattern-based potential engineering has become an important way to explore exotic physics in a variety of two-dimensional condensed matter systems. While these potentials have induced correlated phenomena in almost all commonly studied 2D materials, monolayer graphene has remained an exception. We demonstrate theoretically that a single layer of graphene, when placed between two bulk boron nitride crystal substrates with the appropriate twist angles, can support a robust topological ultraflat band emerging as the second hole band. This is one of the simplest platforms to design and exploit topological flat bands.