Introduction: To investigate cortical network changes using Magnetoencephalography (MEG) signals in Parkinson's disease (PD) patients undergoing Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thalamotomy.
Methods: We evaluated the MEG signals in 16 PD patients with drug-refractory tremor before and after 12-month from MRgFUS unilateral lesion of the ventralis intermediate nucleus (Vim) of the thalamus contralateral to the most affected body side. We recorded patients 24 h before (T0) and 24 h after MRgFUS (T1). We analyzed signal epochs recorded at rest and during the isometric extension of the hand contralateral to thalamotomy. We evaluated cortico-muscular coherence (CMC), the out-strength index from non-primary motor areas to the pre-central area and connectivity indexes, using generalized partial directed coherence. Statistical analysis was performed using RMANOVA and post hoct-tests.
Results: Most changes found at T1 compared to T0 occurred in the beta band and included: (1) a re-adjustment of CMC distribution; (2) a reduced out-strength from non-primary motor areas toward the precentral area; (3) strongly reduced clustering coefficient values. These differences mainly occurred during motor activation and with few statistically significant changes at rest. Correlation analysis showed significant relationships between changes of out-strength and clustering coefficient in non-primary motor areas and the changes in clinical scores.
Discussion: One day after MRgFUS thalamotomy, PD patients showed a topographically reordered CMC and decreased cortico-cortical flow, together with a reduced local connection between different nodes. These findings suggest that the reordered cortico-muscular and cortical-networks in the beta band may represent an early physiological readjustment related to MRgFUS Vim lesion.
Keywords: MEG; MRgFUS; Parkinson’s disease; cortical network; cortico-muscular coherence.
Copyright © 2024 Visani, Panzica, Franceschetti, Golfrè Andreasi, Cilia, Rinaldo, Rossi Sebastiano, Lanteri and Eleopra.