Objective: To develop an improved score for prediction of severe infection in patients with systemic lupus erythematosus (SLE), namely, the SLE Severe Infection Score-Revised (SLESIS-R) and to validate it in a large multicentre lupus cohort.
Methods: We used data from the prospective phase of RELESSER (RELESSER-PROS), the SLE register of the Spanish Society of Rheumatology. A multivariable logistic model was constructed taking into account the variables already forming the SLESIS score, plus all other potential predictors identified in a literature review. Performance was analysed using the C-statistic and the area under the receiver operating characteristic curve (AUROC). Internal validation was carried out using a 100-sample bootstrapping procedure. ORs were transformed into score items, and the AUROC was used to determine performance.
Results: A total of 1459 patients who had completed 1 year of follow-up were included in the development cohort (mean age, 49±13 years; 90% women). Twenty-five (1.7%) had experienced ≥1 severe infection. According to the adjusted multivariate model, severe infection could be predicted from four variables: age (years) ≥60, previous SLE-related hospitalisation, previous serious infection and glucocorticoid dose. A score was built from the best model, taking values from 0 to 17. The AUROC was 0.861 (0.777-0.946). The cut-off chosen was ≥6, which exhibited an accuracy of 85.9% and a positive likelihood ratio of 5.48.
Conclusions: SLESIS-R is an accurate and feasible instrument for predicting infections in patients with SLE. SLESIS-R could help to make informed decisions on the use of immunosuppressants and the implementation of preventive measures.
Keywords: epidemiology; lupus erythematosus, systemic; risk factors.
© Author(s) (or their employer(s)) 2024. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.