The broad impact of cell death genes on the human disease phenome

Cell Death Dis. 2024 Apr 8;15(4):251. doi: 10.1038/s41419-024-06632-7.

Abstract

Cell death mediated by genetically defined signaling pathways influences the health and dynamics of all tissues, however the tissue specificity of cell death pathways and the relationships between these pathways and human disease are not well understood. We analyzed the expression profiles of an array of 44 cell death genes involved in apoptosis, necroptosis, and pyroptosis cell death pathways across 49 human tissues from GTEx, to elucidate the landscape of cell death gene expression across human tissues, and the relationship between tissue-specific genetically determined expression and the human phenome. We uncovered unique cell death gene expression profiles across tissue types, suggesting there are physiologically distinct cell death programs in different tissues. Using summary statistics-based transcriptome wide association studies (TWAS) on human traits in the UK Biobank (n ~ 500,000), we evaluated 513 traits encompassing ICD-10 defined diagnoses and laboratory-derived traits. Our analysis revealed hundreds of significant (FDR < 0.05) associations between genetically regulated cell death gene expression and an array of human phenotypes encompassing both clinical diagnoses and hematologic parameters, which were independently validated in another large-scale DNA biobank (BioVU) at Vanderbilt University Medical Center (n = 94,474) with matching phenotypes. Cell death genes were highly enriched for significant associations with blood traits versus non-cell-death genes, with apoptosis-associated genes enriched for leukocyte and platelet traits. Our findings are also concordant with independently published studies (e.g. associations between BCL2L11/BIM expression and platelet & lymphocyte counts). Overall, these results suggest that cell death genes play distinct roles in their contribution to human phenotypes, and that cell death genes influence a diverse array of human traits.

MeSH terms

  • Cell Death / genetics
  • Genetic Predisposition to Disease
  • Genome-Wide Association Study* / methods
  • Humans
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Transcriptome*