Complete Mitogenome sequencing of the fish louse Argulus japonicus (Crustacea: Branchiura): Comparative analyses and phylogenetic implications

Front Vet Sci. 2024 Mar 25:11:1376898. doi: 10.3389/fvets.2024.1376898. eCollection 2024.

Abstract

The fish louse Argulus japonicus, a branchiuran crustacean of the Argulidae family, is attracting increasing attention because of its parasitic tendencies and significant health threats to global fish farming. The mitogenomes can yield a foundation for studying epidemiology, genetic diversity, and molecular ecology and therefore may be used to assist in the surveillance and control of A. japonicus. In this study, we sequenced and assembled the complete mitogenome of A. japonicus to shed light on its genetic and evolutionary blueprint. Our investigation indicated that the 15,045-bp circular genome of A. japonicus encodes 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and 2 ribosomal RNAs (rRNAs) with significant AT and GC skews. Comparative genomics provided an evolutionary scenario for the genetic diversity of 13 PCGs: all were under purifying selection, with cox1 and nad6 having the lowest and highest evolutionary rates, respectively. Genome-wide phylogenetic trees established a close relationship between species of the families Argulidae (Arguloida) and Armilliferidae (Porocephalida) within Crustacea, and further, A. japonicus and Argulus americanus were determined to be more closely related to each other than to others within the family Argulidae. Single PCG-based phylogenies supported nad1 and nad6 as the best genetic markers for evolutionary and phylogenetic studies for branchiuran crustaceans due to their similar phylogenetic topologies with those of genome-based phylogenetic analyses. To sum up, these comprehensive mitogenomic data of A. japonicus and related species refine valuable marker resources and should contribute to molecular diagnostic methods, epidemiological investigations, and ecological studies of the fish ectoparasites in Crustacea.

Keywords: Argulus japonicus; fish lice; genetic markers; mitogenomes; phylomitogenomics.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was supported by the National Natural Science Foundation of China (grant no. 32273028 to YX).