Impact of Deltoid Computer Tomography Image Data on the Accuracy of Machine Learning Predictions of Clinical Outcomes after Anatomic and Reverse Total Shoulder Arthroplasty

J Clin Med. 2024 Feb 23;13(5):1273. doi: 10.3390/jcm13051273.

Abstract

Background: Despite the importance of the deltoid to shoulder biomechanics, very few studies have quantified the three-dimensional shape, size, or quality of the deltoid muscle, and no studies have correlated these measurements to clinical outcomes after anatomic (aTSA) and/or reverse (rTSA) total shoulder arthroplasty in any statistically/scientifically relevant manner. Methods: Preoperative computer tomography (CT) images from 1057 patients (585 female, 469 male; 799 primary rTSA and 258 primary aTSA) of a single platform shoulder arthroplasty prosthesis (Equinoxe; Exactech, Inc., Gainesville, FL) were analyzed in this study. A machine learning (ML) framework was used to segment the deltoid muscle for 1057 patients and quantify 15 different muscle characteristics, including volumetric (size, shape, etc.) and intensity-based Hounsfield (HU) measurements. These deltoid measurements were correlated to postoperative clinical outcomes and utilized as inputs to train/test ML algorithms used to predict postoperative outcomes at multiple postoperative timepoints (1 year, 2-3 years, and 3-5 years) for aTSA and rTSA. Results: Numerous deltoid muscle measurements were demonstrated to significantly vary with age, gender, prosthesis type, and CT image kernel; notably, normalized deltoid volume and deltoid fatty infiltration were demonstrated to be relevant to preoperative and postoperative clinical outcomes after aTSA and rTSA. Incorporating deltoid image data into the ML models improved clinical outcome prediction accuracy relative to ML algorithms without image data, particularly for the prediction of abduction and forward elevation after aTSA and rTSA. Analyzing ML feature importance facilitated rank-ordering of the deltoid image measurements relevant to aTSA and rTSA clinical outcomes. Specifically, we identified that deltoid shape flatness, normalized deltoid volume, deltoid voxel skewness, and deltoid shape sphericity were the most predictive image-based features used to predict clinical outcomes after aTSA and rTSA. Many of these deltoid measurements were found to be more predictive of aTSA and rTSA postoperative outcomes than patient demographic data, comorbidity data, and diagnosis data. Conclusions: While future work is required to further refine the ML models, which include additional shoulder muscles, like the rotator cuff, our results show promise that the developed ML framework can be used to evolve traditional CT-based preoperative planning software into an evidence-based ML clinical decision support tool.

Keywords: anatomic total shoulder arthroplasty; artificial intelligence; clinical decision support tools; clinical outcome predictions; machine learning; reverse total shoulder arthroplasty.

Grants and funding

No funding was provided to complete this specific study; however, Exactech Inc. (Gainesville, FL) sponsored clinical data collection for the clinical outcomes data and CT image data used in this machine learning analysis.