Gastroenteritis caused by Campylobacter represents the most common reported foodborne bacterial illness worldwide, followed by salmonellosis. Both diseases are often caused by the consumption of contaminated, insufficiently heated poultry meat. This can result from contamination of the meat during the slaughtering processes. Food contact surfaces like stainless steel or plucking fingers contribute significantly to cross-contamination of poultry carcasses. Modification of these surfaces could lead to a reduction of the bacterial burden, as already proven by successful application in various food industry sectors, such as packaging.In this study, nanoscale silica-coated and uncoated stainless-steel surfaces and plucking fingers were compared on a pilot scale regarding attachment and detachment of Campylobacter jejuni, Salmonella Enteritidis and Escherichia coli.The bacteria did not adhere less to the coated plucking fingers or stainless-steel sections than to the uncoated ones. The coating also did not lead to a significant difference in detachment of Campylobacter jejuni, Salmonella Enteritidis and Escherichia coli from the investigated surfaces compared to the uncoated ones.Our study did not reveal any differences between the coated and uncoated surfaces with regard to the investigated bacteria. In order to achieve a better adaptation of the coating to slaughterhouse conditions, future studies should focus on its further development based on the investigation of specific coating parameters.
Keywords: Cross-contamination; Food contact surfaces; Nanomaterials; Poultry; Slaughtering.
© 2024. The Author(s).