Halide Exchange in Perovskites Enables Bromine/Iodine Hybrid Cathodes for Highly Durable Zinc Ion Batteries

Adv Mater. 2024 Jun;36(26):e2401924. doi: 10.1002/adma.202401924. Epub 2024 Apr 15.

Abstract

With the increasing need for reliable storage systems, the conversion-type chemistry typified by bromine cathodes attracts considerable attention due to sizeable theoretical capacity, cost efficiency, and high redox potential. However, the severe loss of active species during operation remains a problem, leading researchers to resort to concentrated halide-containing electrolytes. Here, profiting from the intrinsic halide exchange in perovskite lattices, a novel low-dimensional halide hybrid perovskite cathode, TmdpPb2[IBr]6, which serves not only as a halogen reservoir for reversible three-electron conversions but also as an effective halogen absorbent by surface Pb dangling bonds, C─H…Br hydrogen bonds, and Pb─I…Br halogen bonds, is proposed. As such, the Zn||TmdpPb2[IBr]6 battery delivers three remarkable discharge voltage plateaus at 1.21 V (I0/I-), 1.47 V (I+/I0), and 1.74 V (Br0/Br-) in a typical halide-free electrolyte; meanwhile, realizing a high capacity of over 336 mAh g-1 at 0.4 A g-1 and high capacity retentions of 88% and 92% after 1000 cycles at 1.2 A g-1 and 4000 cycles at 3.2 A g-1, respectively, accompanied by a high coulombic efficiency of ≈99%. The work highlights the promising conversion-type cathodes based on metal-halide perovskite materials.

Keywords: halogen cathode; low‐dimensional perovskites; metal–halogen batteries; zinc ion batteries.