The human L-type amino acid transporter 1 (LAT1; SLC7A5), is an amino acid exchanger protein, primarily found in the blood-brain barrier, placenta, and testis, where it plays a key role in amino acid homeostasis. Cholesterol is an essential lipid that has been highlighted to play a role in regulating the activity of membrane transporters, such as LAT1, yet little is known about the molecular mechanisms driving this phenomenon. Here we perform a comprehensive computational analysis to investigate cholesterol's role in LAT1 structure and function, focusing on four cholesterol-binding sites (CHOL1-4) identified in a recent LAT1-apo inward-open conformation cryo-EM structure. Through a series of independent molecular dynamics (MD) simulations, molecular docking, MM/GBSA free energy calculations, and other analysis tools, we explored the interactions between LAT1 and cholesterol. Our findings suggest that CHOL3 forms the most stable and favorable interactions with LAT1. Principal component analysis (PCA) and center of mass (COM) distance assessments show that CHOL3 binding stabilizes the inward-open state of LAT1 by preserving the spatial arrangement of the hash and bundle domains. Additionally, we propose an alternative cholesterol-binding site for originally assigned CHOL1. Overall, this study improves the understanding of cholesterol's modulatory effect on LAT1 and proposes candidate sites for the discovery of future allosteric ligands with rational design.