Potentiating Activity of GmhA Inhibitors on Gram-Negative Bacteria

J Med Chem. 2024 Apr 25;67(8):6610-6623. doi: 10.1021/acs.jmedchem.4c00037. Epub 2024 Apr 10.

Abstract

Inhibition of the biosynthesis of bacterial heptoses opens novel perspectives for antimicrobial therapies. The enzyme GmhA responsible for the first committed biosynthetic step catalyzes the conversion of sedoheptulose 7-phosphate into d-glycero-d-manno-heptose 7-phosphate and harbors a Zn2+ ion in the active site. A series of phosphoryl- and phosphonyl-substituted derivatives featuring a hydroxamate moiety were designed and prepared from suitably protected ribose or hexose derivatives. High-resolution crystal structures of GmhA complexed to two N-formyl hydroxamate inhibitors confirmed the binding interactions to a central Zn2+ ion coordination site. Some of these compounds were found to be nanomolar inhibitors of GmhA. While devoid of HepG2 cytotoxicity and antibacterial activity of their own, they demonstrated in vitro lipopolysaccharide heptosylation inhibition in Enterobacteriaceae as well as the potentiation of erythromycin and rifampicin in a wild-type Escherichia coli strain. These inhibitors pave the way for a novel treatment of Gram-negative infections.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents* / chemical synthesis
  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Crystallography, X-Ray
  • Drug Synergism
  • Enzyme Inhibitors / chemical synthesis
  • Enzyme Inhibitors / chemistry
  • Enzyme Inhibitors / pharmacology
  • Escherichia coli / drug effects
  • Escherichia coli / enzymology
  • Gram-Negative Bacteria / drug effects
  • Hep G2 Cells
  • Humans
  • Hydroxamic Acids / chemical synthesis
  • Hydroxamic Acids / chemistry
  • Hydroxamic Acids / pharmacology
  • Microbial Sensitivity Tests
  • Models, Molecular
  • Structure-Activity Relationship
  • Zinc / chemistry

Substances

  • Anti-Bacterial Agents
  • Enzyme Inhibitors
  • Hydroxamic Acids
  • Zinc