With impressive individual properties, carbon nanotubes (CNTs) show great potential in constructing high-performance fibers. However, the tensile strength of as-prepared carbon nanotube fibers (CNTFs) by floating catalyst chemical vapor deposition (FCCVD) is plagued by the weak intertube interaction between the essential CNTs. Here, we developed a chlorine (Cl)/water (H2O)-assisted length furtherance FCCVD (CALF-FCCVD) method to modulate the intertube interaction of CNTs and enhance the mechanical strength of macroscopic fibers. The CNTs acquired by the CALF-FCCVD method show an improvement of 731% in length compared to that by the conventional iron-based FCCVD system. Moreover, CNTFs prepared by CALF-FCCVD spinning exhibit a high tensile strength of 5.27 ± 0.27 GPa (4.62 ± 0.24 N/tex) and reach up to 5.61 GPa (4.92 N/tex), which outperforms most previously reported results. Experimental measurements and density functional theory calculations show that Cl and H2O play a crucial role in the furtherance of CNT growth. Cl released from the decomposition of methylene dichloride greatly accelerates the growth of the CNTs; H2O can remove amorphous carbon on the floating catalysts to extend their lifetime, which further modulates the growth kinetics and improves the purity of the as-prepared fibers. Our design of the CALF-FCCVD platform offers a powerful way to tune CNT growth kinetics in direct spinning toward high-strength CNTFs.