Prognostic and onco-immunological value of immune-related eRNAs-driven genes in lung adenocarcinoma

J Cancer Res Clin Oncol. 2024 Apr 11;150(4):188. doi: 10.1007/s00432-024-05687-5.

Abstract

Background: We aimed to comprehensively analyze the clinical value of immune-related eRNAs-driven genes in lung adenocarcinoma (LUAD) and find the potential biomarkers for prognosis and therapeutic response to improve the survival of this malignant disease.

Materials and methods: Pearson's correlation analysis was performed to identify the immune-related eRNAs-driven genes. Cox regression and least absolute shrinkage and selection operator (LASSO) analyses were used to construct this prognostic risk signature. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were used to investigate the underlying molecular mechanism. The single sample gene set enrichment analysis (ssGSEA) algorithm was conducted to evaluate the immune status based on the signature. The quantitative real-time PCR (qRT-PCR) analysis was performed to evaluate the expression value of the signature genes between LUAD tissues and adjacent lung tissues.

Results: Five immune-related eRNAs-driven genes (SHC1, GDF10, CCL14, FYN, and NOD1) were identified to construct a prognostic risk signature with favorable predictive capacity. The patients with high-risk scores based on the signature were significantly associated with the malignant clinical features compared with those with low-risk scores. Kaplan-Meier analysis demonstrated that the sample in the low-risk group had a prolonged survival compared with those in the high-risk group. This risk signature was validated to have a promising predictive capacity and reliability in diverse clinical situations and independent cohorts. The functional enrichment analysis demonstrated that humoral immune response and intestinal immune network for IgA production pathway might be the underlying molecular mechanism related to the signature. The proportion of the vast majority of immune infiltrating cells in the high-risk group was significantly lower than that in the low-risk group, and the immunotherapy response rate in the low-risk group was significantly higher than that in the high-risk group. Moreover, BI-2536, sepantronium bromide, and ULK1 were the potential drugs for the treatment of patients with higher risk scores. Finally, the experiment in vivo and database analysis indicated that CCL14, FYN, NOD1, and GDF10 are the potential LUAD suppressor and SHC1 is a potential treatment target for LUAD.

Conclusion: Above all, we constructed a prognostic risk signature with favorable predictive capacity in LUAD, which was significantly associated with malignant features, immunosuppressive tumor microenvironment, and immunotherapy response and may provide clinical benefit in clinical decisions.

Keywords: Biomarker; Enhancer RNA; Immune; Lung adenocarcinoma; Prognosis.

MeSH terms

  • Adenocarcinoma of Lung* / genetics
  • Enhancer RNAs
  • Humans
  • Lung Neoplasms* / genetics
  • Prognosis
  • Reproducibility of Results
  • Tumor Microenvironment

Substances

  • Enhancer RNAs