The time course of stimulus-specific perceptual learning

J Vis. 2024 Apr 1;24(4):9. doi: 10.1167/jov.24.4.9.

Abstract

Practice on perceptual tasks can lead to long-lasting, stimulus-specific improvements. Rapid stimulus-specific learning, assessed 24 hours after practice, has been found with just 105 practice trials in a face identification task. However, a much longer time course for stimulus-specific learning has been found in other tasks. Here, we examined 1) whether rapid stimulus-specific learning occurs for unfamiliar, non-face stimuli in a texture identification task; 2) the effects of varying practice across a range from just 21 trials up to 840 trials; and 3) if rapid, stimulus-specific learning persists over a 1-week, as well as a 1-day, interval. Observers performed a texture identification task in two sessions separated by one day (Experiment 1) or 1 week (Experiment 2). Observers received varying amounts of practice (21, 63, 105, or 840 training trials) in session 1 and completed 840 trials in session 2. In session 2, one-half of the observers in each group performed the task with the same textures as in session 1, and one-half switched to novel textures (same vs. novel conditions). In both experiments we found that stimulus-specific learning - defined as the difference in response accuracy in the same and novel conditions - increased as a linear function of the log number of session 1 training trials and was statistically significant after approximately 100 training trials. The effects of stimulus novelty did not differ across experiments. These results support the idea that stimulus-specific learning in our task arises gradually and continuously through practice, perhaps concurrently with general learning.

MeSH terms

  • Humans
  • Learning*