Discovery of the First-in-Class G9a/GLP PROTAC Degrader

J Med Chem. 2024 Apr 25;67(8):6397-6409. doi: 10.1021/acs.jmedchem.3c02394. Epub 2024 Apr 11.

Abstract

Aberrantly expressed lysine methyltransferases G9a and GLP, which catalyze mono- and dimethylation of histone H3 lysine 9 (H3K9), have been implicated in numerous cancers. Recent studies have uncovered both catalytic and noncatalytic oncogenic functions of G9a/GLP. As such, G9a/GLP catalytic inhibitors have displayed limited anticancer activity. Here, we report the discovery of the first-in-class G9a/GLP proteolysis targeting chimera (PROTAC) degrader 10 (MS8709), as a potential anticancer therapeutic. 10 induces G9a/GLP degradation in a concentration-, time-, and ubiquitin-proteasome system (UPS)-dependent manner. Futhermore, 10 does not alter the mRNA expression of G9a/GLP and is selective for G9a/GLP over other methyltransferases. Moreover, 10 displays superior cell growth inhibition to the parent G9a/GLP inhibitor UNC0642 in prostate, leukemia, and lung cancer cells and has suitable mouse pharmacokinetic properties for in vivo efficacy studies. Overall, 10 is a valuable chemical biology tool to further investigate the functions of G9a/GLP and a potential therapeutic for treating G9a/GLP-dependent cancers.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Cell Line, Tumor
  • Cell Proliferation / drug effects
  • Drug Discovery
  • Histocompatibility Antigens / metabolism
  • Histone-Lysine N-Methyltransferase* / antagonists & inhibitors
  • Histone-Lysine N-Methyltransferase* / metabolism
  • Humans
  • Male
  • Mice
  • Proteolysis / drug effects
  • Structure-Activity Relationship

Substances

  • Histone-Lysine N-Methyltransferase
  • Antineoplastic Agents
  • EHMT2 protein, human
  • Histocompatibility Antigens