Frequency-dependent alterations in functional connectivity in patients with Alzheimer's Disease spectrum disorders

Front Aging Neurosci. 2024 Mar 28:16:1375836. doi: 10.3389/fnagi.2024.1375836. eCollection 2024.

Abstract

Background: In the spectrum of Alzheimer's Disease (AD) and related disorders, the resting-state functional magnetic resonance imaging (rs-fMRI) signals within the cerebral cortex may exhibit distinct characteristics across various frequency ranges. Nevertheless, this hypothesis has not yet been substantiated within the broader context of whole-brain functional connectivity. This study aims to explore potential modifications in degree centrality (DC) and voxel-mirrored homotopic connectivity (VMHC) among individuals with amnestic mild cognitive impairment (aMCI) and AD, while assessing whether these alterations differ across distinct frequency bands.

Methods: This investigation encompassed a total of 53 AD patients, 40 aMCI patients, and 40 healthy controls (HCs). DC and VMHC values were computed within three distinct frequency bands: classical (0.01-0.08 Hz), slow-4 (0.027-0.073 Hz), and slow-5 (0.01-0.027 Hz) for the three respective groups. To discern differences among these groups, ANOVA and subsequent post hoc two-sample t-tests were employed. Cognitive function assessment utilized the mini-mental state examination (MMSE) and Montreal Cognitive Assessment (MoCA). Pearson correlation analysis was applied to investigate the associations between MMSE and MoCA scores with DC and VMHC.

Results: Significant variations in degree centrality (DC) were observed among different groups across diverse frequency bands. The most notable differences were identified in the bilateral caudate nucleus (CN), bilateral medial superior frontal gyrus (mSFG), bilateral Lobule VIII of the cerebellar hemisphere (Lobule VIII), left precuneus (PCu), right Lobule VI of the cerebellar hemisphere (Lobule VI), and right Lobule IV and V of the cerebellar hemisphere (Lobule IV, V). Likewise, disparities in voxel-mirrored homotopic connectivity (VMHC) among groups were predominantly localized to the posterior cingulate gyrus (PCG) and Crus II of the cerebellar hemisphere (Crus II). Across the three frequency bands, the brain regions exhibiting significant differences in various parameters were most abundant in the slow-5 frequency band.

Conclusion: This study enhances our understanding of the pathological and physiological mechanisms associated with AD continuum. Moreover, it underscores the importance of researchers considering various frequency bands in their investigations of brain function.

Keywords: Alzheimer’s disease; amnestic mild cognitive impairment; degree centrality; resting-state functional magnetic resonance imaging; slow-5 frequency band; voxel-mirrored homotopic connectivity.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was funded by Natural Science Foundation of Zhejiang Province (Y22H185692) and Zhejiang Provincial Medical and Health Technology Project (2024KY1313).