In commercially available honey, the application of a heat treatment to prevent spoilage can potentially compromise its beneficial properties and quality, and these effects worsen with extended storage. The high-pressure processing (HPP) of honey is being explored, but its long-term impact on honey quality has not been characterised yet. This study evaluated the effects of HPP and thermal processing on the microbial load, physicochemical quality (i.e., hydroxymethylfurfural content and diastase activity), and antioxidant capacity of honey after treatment and following extended storage (6, 12, and 24 months) at 20 °C. Pasteurization (78 °C/6 min) effectively eliminated the microorganisms in honey but compromised its physicochemical quality and antioxidant activity. HPP initially showed sublethal inactivation, but storage accelerated the decrease in yeasts/moulds and aerobic mesophiles in honey (being <1 log CFU/g after 24 months of storage) compared to unprocessed honey and honey thermally treated under mild conditions (55 °C/15 min). The physicochemical characteristics of the quality of HPP-treated honey and raw unprocessed honey did change after long-term storage (24 months) but remained within regulatory standards. In conclusion, HPP emerged as a more suitable and safe preservation method for Apis mellifera honey, with a minimal risk of a loss of antioxidant activity compared to traditional industrial honey pasteurization.
Keywords: HMF; antioxidant activity; diastase; honey; microbial quality; pasteurization; thermal treatment.