Triterpenoids from the Leaves of Diospyros digyna and Their PTP1B Inhibitory Activity

Molecules. 2024 Apr 5;29(7):1640. doi: 10.3390/molecules29071640.

Abstract

Six new 2α-hydroxy ursane triterpenoids, 3α-cis-p-coumaroyloxy-2α,19α-dihydroxy-12-ursen-28-oic acid (1), 3α-trans-p-coumaroyloxy-2α,19α-dihydroxy-12-ursen-28-oic acid (2), 3α-trans-p-coumaroyloxy-2α-hydroxy-12-ursen-28-oic acid (3), 3β-trans-p-coumaroyloxy-2α-hydroxy-12,20(30)-ursadien-28-oic acid (4), 3β-trans-feruloyloxy-2α-hydroxy-12,20(30)-ursadien-28-oic acid (5), and 3α-trans-feruloyloxy-2α-hydroxy-12,20(30)-ursadien-28-oic acid (6), along with eleven known triterpenoids (7-17), were isolated from the leaves of Diospyros digyna. Their chemical structures were elucidated by comprehensive analysis of UV, IR, HRESIMS, and NMR spectra. All the isolated compounds were evaluated for their PTP1B inhibitory activity. 3β-O-trans-feruloyl-2α-hydroxy-urs-12-en-28-oic acid (13) showed the best inhibition activity with an IC50 value of 10.32 ± 1.21 μM. The molecular docking study found that the binding affinity of compound 13 for PTP1B was comparable to that of oleanolic acid (positive control).

Keywords: Diospyros digyna; Ebenaceae; PTP1B inhibitory activity; ursane triterpenoids.

MeSH terms

  • Diospyros*
  • Hydroxy Acids
  • Molecular Docking Simulation
  • Plant Leaves
  • Triterpenes* / pharmacology

Substances

  • Hydroxy Acids
  • Triterpenes